

Endotoxin detection – which method is best for me?

Lonza Walkersville, Inc. | © 2021

Endotoxin detection methods

Pharma & Biotech

LAL Assays

- ➔ Gel clot
- Semi-quantitative gel clot
- *Endpoint chromogenic*
- *Endpoint turbidimetric*
- Kinetic chromogenic
- Sinetic turbidimetric

Recombinant Factor C Assays

Endpoint fluorescent

Which test is best?

Each test has its own place

The choice of test for a laboratory depends on:

- Quantitative/Semi-quantitative
- Qualitative

Available equipment

Lonza PYROGENT® Gel Clot LAL Assay

- PYROGENT[®] Kits
 - lysate only (matched, lyophilized control standard endotoxin (CSE) can be purchased separately)
- PYROGENT[®] Plus Kits
- lysate and matched, lyophilized CSE
- Multiple sensitivities and vial sizes available

Vial size	Available sensitivities (EU/mL)		
50 tests/vial	0.03, 0.06, 0.125, 0.25		
16 tests/vial	0.06, 0.125		

• Multiple kit configurations – standard sizes and bulk

Gel clot assay

Pharma & Biotech

LAL Endotoxin FC FC (FB) FB Proclotting Clotting Enzyme Enzyme Coagulogen Coagulin

Clot Formation

Performing the gel clot assay

reaction tubes

Reading the gel clot assay

- Invert tube 180° in a smooth motion
- A positive reaction is characterized by the formation of a firm gel that remains intact
- A negative reaction is characterized by the absence of a solid gel after inversion

PYROGENT[®] Gel Clot LAL Assay

Advantages	Disadvantages
A simple test to perform	Results are subjective
➔ Low start-up costs	Gel formation is prone to interference
No readers/software necessary	Labor intensive
	 Qualitative Semi-quantitative with many dilutions

Gel clot assays

Pharma & Biotech

The gel clot assay can be performed in two ways:

Limit test

Semi-quantitative

Gel clot assays

Pharma & Biotech

Limit Test

- Yes/No answer to a specific kit sensitivity (more than/less than labeled lysate sensitivity)
- Positive control, negative control, sample and sample positive product control (PPC)

Semi-quantitative

- Standard series of endotoxin
- Dilution series of sample
- PPC most concentrated sample
- Negative control
- Sample endotoxin load range = Dilution factor of last positive (clotting) sample x kit sensitivity

Kinetic LAL assays

Pharma & Biotech

(01)

The most recently developed LAL assays

02

Most objective of all the LAL assays

03

Two forms of kinetic LAL assays are available:

- Kinetic turbidimetric
- Kinetic chromogenic

Lonza kinetic LAL assays

- Kinetic turbidimetric Lonza PYROGENT[®]-5000 Assay
- Kinetic chromogenic Lonza Kinetic-QCL[®] Assay
- Both kinetic LAL assay types are quantitative and can be conducted using an eight-channel incubating plate reader (ELx808[™] Reader) with supporting software (Lonza WinKQCL[®] Software), provided the correct filters are used:
- PYROGENT[®]-5000 Assay 340 nm filter
- Kinetic-QCL[®] Assay 405 nm filter

Kinetic assays

Lonza

Performing the kinetic assay

Pharma & Biotech

Reconstitute CSE as per package insert

Prepare standards, samples and controls and pipette into 96-well plate Pre-incubate the plate for 10 minutes at 37°C

Near the end of the pre-incubation period, reconstitute lysate as per package insert Add lysate to 96-well plate and start the assay

How kinetic assays work

- The optical density in each well is read at the start of the assay
- All results from the first reading are set to a baseline level to account for color, opacity and more
- The reader measures the optical density at fixed time intervals looking for a delta mOD of 30 for the kinetic turbidimetric assay and a delta mOD of 200 for the kinetic chromogenic assay
- The 'end of assay' mark is reached when the lowest standard has reached the required mOD change
- The time taken for each well to reach the required mOD change is known as the reaction time

Kinetic LAL reaction

The kinetic assay

Ko

The mean reaction time for each of the endotoxin standards is plotted against endotoxin content using linear regression or PowerCurve[™] to create a standard curve The non-linear nature of the data means that at a minimum, the data must be subject to a log-log transformation to plot the standard curve Mean reaction times for the sample and sample PPCs are used to calculate interpolated endotoxin content from this standard curve and reported in the relevant units – EU/ml or EU/mg – according to the endotoxin limit entered into the product details

Reaction time versus endotoxin concentration

PYROGENT®-5000 Kinetic Turbidimetric LAL Assay

Pharma & Biotech

Quantitative over a large range – 0.01 to 100 EU/ml

Good for testing water and simple products

Lower reagent cost than kinetic chromogenic assay

Less sensitive than the Kinetic-QCL[®] Assay

Disadvantages

Similar interference problems as in the gel clot method and not suitable for turbid or viscous products

- Prone to problems from bubbles
- Requires a reader, computer and software

Kinetic-QCL® Kinetic Chromogenic LAL Assay

A sustainable alternative to LAL – PyroGene® Assay

Pharma & Biotech

 \rightarrow This assay has several major advantages over conventional LAL assays

 \rightarrow The future of endotoxin testing

Recombinant factor C endotoxin detection assay

Pharma & Biotech

Lonza

PyroGene® Assay overview

- Single step quantitative endpoint fluorescent assay
- Assay takes one hour at 37°C
- Uses liquid reagents
- Performed in standard 96-well microplates
- The PyroWave[®] XM Reader is controlled by WinKQCL[®] Software

PyroGene® Assay features

- Consistent assay performance
- Security of supply
- No animal utilization
- Specificity for endotoxin
- Elimination of glucan reaction pathway removing false positive issue seen with LAL
- Comparability to LAL-based methods in terms of performance and pricing

LONZO Pharma & Biotech

Performing the PyroGene® Assay

Reconstitute CSE as per package insert and prepare a 4-point standard curve 0.005 to 5 EU/ml Prepare standards, samples and controls and pipette into 96-well plate

Pre-incubate the plate for 10 minutes at 37°C Prepare working reagent according to package insert (ratio 5:4:1, substrate:buffer:enzyme) and add to each well

Start assay

Reading the PyroGene® Assay

Pharma & Biotech

WinKQCL[®] Software will take the first read for all wells and store them 02

The plate is then incubated for 60 minutes at 37°C

At the end of the assay the plate is read again, and the readings stored

PyroGene[®] Assay – calculations

Pharma & Biotech

ΔRFU = RFU60 min minus
 RFUtime 0

WinKQCL[®] Software then calculates:

 \bigcirc Averages \triangle RFU for BLANKs

WinKQCL[®] Software then constructs a log-log plot of ΔRFU versus endotoxin concentration

Unknowns (samples and sample PPCs) are determined using this standard curve

PyroGene[®] rFC Assay standard curve

Pharma & Biotech

A standard curve for the PyroGene[®] rFC Assay.

The standard curve has a low RFU for the 0.005 EU/ml standard and a high RFU for the 5 EU/ml standard.

Endotoxin assay overview

Summary of endotoxin detection methods

- LAL Assays
 - Gel clot
 - Semi-quantitative gel clot
 - Endpoint chromogenic
 - Endpoint turbidimetric
 - Kinetic chromogenic
 - Kinetic turbidimetric
- Recombinant Factor C Assays
 - Endpoint fluorescent

Lonza

Choice of assay is dependent on...

	Gel clot	Kinetic turbidimetric	Kinetic chromogenic	rFC assay
Workload	• • •	•	•	•
Nature of the samples to be tested	Water, in-process and final release testing. Also suitable for plant- based material and acidic/basic samples	Water samples, simple products and yellow- colored products which absorb in the 405 nm range	Biological products (i.e. vaccines and antibiotics) and turbid or viscous samples	Water, in-process, final release testing. Also suitable for plant-based material
Available equipment or equipment budget	Dry heat block or water bath	Incubating absorbance reader	Incubating absorbance reader	Incubating fluorescence reader
Need for quantitation	Qualitative (Yes/No answer)	Quantitative (Results calculated from a standard curve)	Quantitative (Results calculated from a standard curve)	Quantitative (Results calculated from a standard curve)

Lonza

Pharma & Biotech

Thank You

ELx808 is a trademark of BioTek Instruments, Inc.

All trademarks belong to Lonza, registered in the USA, EU or CH or to third party owners and used only for informational purposes. The information contained herein is believed to be correct and corresponds to the latest state of scientific and technical knowledge. However, no warranty is made, either expressed or implied, regarding its accuracy or the results to be obtained from the use of such information and no warranty is expressed or implied concerning the use of these products. For more details: www.lonza.com/legal. © 2021 Lonza. RT-PP025 06/2021