

Amaxa™ 96-well Shuttle™ Protocol for Human Unstimulated B Cells

Cell Description

Unstimulated CD19+ human B cells (small round lymphoblastoid cells) are a subpopulation of human peripheral blood mononuclear cells (PBMC). PBMC should be purified from fresh human blood treated with an anticoagulant or from leukocyte-rich buffy coat.

Example for 96-well Nucleofection™ of Primary Human B Cells

Transfection efficiency of freshly isolated human B cells 24 hours post Nucleofection™. 1×10^6 cells were transfected with program 96-E0-117 using 0.4 µg pmaxGFP™. Cells were analyzed 24 hours post Nucleofection™ using a FACS-Calibur™ with HTS option (Becton Dickinson). Cell viability [% PI negative B cells] is approximately 70 % after 24 hours.

Product Description

Cat. No.	V4SP-3096
Size (reactions)	1×96
P3 Primary Cell 96-well Nucleofector™ Solution	2.25 ml
Supplement	0.5 ml
pmaxGFP™ Vector (1.0 μg/μl in 10 mM Tris pH 8.0)	50 µg
Nucleocuvette™ Plate(s)	1

Cat. No.	V4SP-3960
Size (reactions)	10×96
P3 Primary Cell 96-well Nucleofector™ Solution	22.5 ml
Supplement	5 ml
pmaxGFP™ Vector (1.0 μg/μl in 10 mM Tris pH 8.0)	50 µg
Nucleocuvette™ Plate(s)	10

Storage and Stability

Store Nucleofector[™] Solution, Supplement and pmaxGFP[™] Vector at 4° C. For long-term storage, pmaxGFP[™] Vector is ideally stored at -20°C. The expiration date is printed on the solution box. Once the Nucleofector[™] Supplement is added to the Nucleofector[™] Solution, it is stable for three months at 4° C.

Notes

- This Kit is not suitable for transfection of immortalized B cells (e.g. EBV immortalized LCLs). Please use the Primary Cell Optimization 96-well Nucleofector™ Kit instead.
- 96-well Nucleofector™ Solutions can only be used with conductive polymer cuvettes, i.e. in the 96-well Shuttle™ Device and in the 4D-Nucleofector™ System. They are not compatible with the Nucleofector™ II/2b Device.

Required Material

Note

Please make sure that the entire supplement is added to the Nucleofector™ Solution.

- Nucleofector™96-well Shuttle System (Nucleofector™ Device, version IIS;
 96-well Shuttle™ Device; laptop with 96-well Shuttle™ Software)
- Supplemented 96-well Nucleofector™ Solution at room temperature
- Supplied Nucleocuvette[™] plates
- Nucleocuvette™ compatible tips: epT.I.P.S.™ (US/CDN: Eppendorf North America, Cat. No. 2491.431, Rest of World: Eppendorf AG, Cat. No. 0030073.266), Matrix TallTips™ (Matrix Technologies Corp., Cat. No. 7281) or LTS Tips (Rainin Instrument, LLC, Cat. No. SR-L10F, SR/SS-L250S, SR/SS-L300S). Before using other types of pipette tips, please ensure they reach the bottom of the Nucleocuvette™ Wells without getting stuck
- Supplied pmaxGFP™ Vector, stock solution 1 μg/μl

Note

Volume of substrate solution added to each sample should not exceed 10 % of the total reaction volume (2 μ l for 20 μ l reactions). For positive control using pmaxGFPTM Vector, please dilute the stock solution to reach the appropriate working concentration.

- Substrate of interest, highly purified, preferably by using endotoxin free Kits; A260 : A280 ratio should be at least 1.8
- 96-well culture plates or culture plates of your choice
- Culture medium: RPMI 1640 (Lonza; Cat. No. 12-167F) supplemented with 10% autologous serum or 10% fetal calf serum (FCS), 100 µg/ml streptomycin, 100 U/ml penicillin, and 2 mM UltraGlutamine I (Lonza; Cat. No. 17-605E/U1)
- For isolation: PBS with 0.5 % BSA (PBS/BSA); Ficoll-Paque™ Plus (GE Healthcare; Cat.No. 17-1440-03)
- Prewarm appropriate volume of culture media at 37°C (230 μl per sample)
- Appropriate number of cells (1×10⁶ cells per sample)

1. Pre Nucleofection™

Note

Transfection results may be donor-dependent. This protocol is designed for unstimulated primary human B cells. No cultivation is required prior to Nucleofection™. It is preferable to use freshly isolated PBMC or fresh B cell enriched preparations (e.g. by magnetic separation) for Nucleofection™. For preparation, do not perform protocols using hypo-osmolar buffers. This may lead to high cell mortality after Nucleofection™.

Blood Samples

1.1 Fresh human blood treated with an anticoagulant (e.g. heparin, citrate, ACD-A) or alternatively, leukocyte-enriched buffy coat not older than 8 hours. The samples should be diluted with 2–4 volumes of PBS containing 0.5 % BSA (PBS/BSA)

Preparation of PBMC

- 1.2 Pipet 15 ml Ficoll-Paque™ Plus in a 50 ml conical tube
- 1.3 Overlay FicoII- Paque™ Plus with 35 ml blood sample and centrifuge at 750×g for 20 minutes at 20°C in a swinging-bucket rotor without brake
- 1.4 Remove the upper layer leaving the mononuclear cell layer undisturbed at the interphase. Carefully transfer the interphase cells [lymphocytes and monocytes] to a new 50 ml conical tube
- 1.5 Add PBS/BSA to 50 ml mark, mix and centrifuge at 350×g for 10 minutes at 4°C. Remove the supernatant carefully
- 1.6 Resuspend the cell pellet in 25 ml of PBS/BSA and centrifuge at 160×g for 15 minutes at 4°C. Remove the supernatant carefully
- 1.7 Resuspend the cell pellet in 25 ml PBS/BSA and centrifuge at 300×g for 10 min at 4°C. Remove the supernatant carefully
- 1.8 Resuspend cell pellet in 5 ml PBS/BSA and count the cells
- 1.9 For freshly isloated cells no cultivation is required prior to Nucleofection™. For crypopreserved cells we recommend incubating the thawed cells for 1–2 hours at 37°C in culture medium before Nucleofection™

Note

Purified PBMC may be stored at 4°C overnight in PBS/BSA, but this can cause a significant loss of transfection efficiency.

2. Nucleofection™

One Nucleofection™ Sample Contains

- 1×10⁶ cells
- 0.2-1 µg plasmid DNA (in 1-2 µl H₂0 or TE) or 0.4 µg pmaxGFP™ Vector or 30-300 nM siRNA (0.6-6 pmol/sample)
- 20 μl P3 Primary Cell 96-well Nucleofector™ Solution
- 2.1 Please make sure that the entire supplement is added to the Nucleofector™ Solution!
- 2.2 Start Nucleofector™ 96-well Shuttle™ Software, verify device connection and upload experimental parameter file (for details see Manual "Nucleofector™ 96-well Shuttle™ System")
- 2.3 Select the appropriate Nucleofector™ Program: **96-E0-117**
- 2.4 Prepare cell culture plates by filling appropriate number of wells with desired volume of recommended culture media, e.g. 150 μ l for one well of a 96-well plate and pre-incubate/equilibrate plates in a humidified 37°C/5 % CO₂ incubator
- 2.5 Pre-warm an aliquot of culture media to 37°C (80 μl per sample* see comments at the end of this chapter)
- 2.6 Prepare 0.2–1 µg plasmid DNA or 0.4 µg pmaxGFP™ DNA. For siRNA experiments we recommend to start using 30–300 nM (0.6–6 pmol/sample) siRNA
- 2.7 Count the cells and determine cell density
- 2.8 Centrifuge the required number of cells $(1 \times 10^6 \text{ cells per sample})$ at $90 \times g$ for 10 minutes at room temperature
- 2.9 Resuspend the cell pellet carefully in 20 µl room temperature 96well Nucleofector™ Solution per sample

A: One or several substrates (DNAs or RNAs) in multiples

- Prepare mastermixes by dividing cell suspension according to number of substrates
- Add required amount of substrates to each aliquot (max. 2 µl per sample)
- Transfer 20 µl of mastermixes into the wells of the 96-well Nucleocuvette™ Modules

B: Multiple substrates (e.g. Library Transfection)

- Pipette 20 μl of cell suspension into each well of a sterile
 U- or V-bottom 96-well microtiter plate
- Add 2 μl substrates (maximum) to each well
- Transfer 20 µl of cells with substrates into the wells of the 96-well Nucleocuvette™ Modules

Note

It is advisable to pre-dispense each cell suspension into a sterile round-bottom 96-well plate or to pipet from a pipetting reservoir for multi-channel pipettes. Use a multi-channel or single-channel pipette with suitable pipette tips. As leaving cells in 96-well Nucleofector™ Solution for extended periods of time may lead to reduced transfection efficiency and viability it is important to work as quickly as possible. Avoid air bubbles while pipetting.

- 2.10 Gently tap the Nucleocuvette™ Plate to make sure the sample covers the bottom of the well
- 2.11 Place 96-well Nucleocuvette™ Plate with closed lid into the retainer of the 96-well Shuttle. Well "A1" must be in upper left position
- 2.12 Start 96-well Nucleofection™ Process by either pressing "Upload and start" in the 96-well Shuttle™ Software or pressing "Upload" in the 96-well Shuttle™ Software and then the "Start" button at the 96-well Shuttle™ (for both options please refer to the respective Manual)
- 2.13 After run completion, open retainer and carefully remove the 96-well Nucleocuvette™ Plate from the retainer
- 2.14 Resuspend cells with desired volume of pre-warmed media (maximum cuvette volume 200 μ I). Mix cells by gently pipetting up and down two to three times. Recommendation for 96-well plates: Resuspend cells in 80 μ I of pre-warmed media*
- 2.15 Plate desired amount of cells in culture system of your choice. Recommendation for 96-well plates: Transfer 50 μ l of resuspended cells to 150 μ l pre-warmed media prepared in 96-well culture plates*

* Note

The indicated cell numbers and volumes have been found to produce optimal 96-well Nucleofection™ Results in most cases, however, depending on your specific needs you may wish to test an extended range of cell numbers. Cell numbers and volumes can be adapted such that fewer cells are transferred or duplicate plates can be seeded.

3. Post Nucleofection™

3.1 Incubate the cells in humidified $37^{\circ}\text{C/5}\%$ CO₂ incubator until analysis. Gene expression or down regulation, respectively, is often detectable after only 4–8 hours medium II with fresh medium once a week

Additional Information

Up-To-Date List of all Nucleofector™ References

www.lonza.com/nucleofection-citations

Technical Assistance and Scientific Support

USA/Canada

Tel 800 521 0390 (toll-free) Fax 301 845 8338 scientific.support@lonza.com

Europe and Rest of World

Tel +49 221 99199 400 Fax +49 221 99199 499 scientific.support.eu@lonza.com

References

References

- 1. Shi GX et al, J Immunol. 2002;169(5):2507-15.
- 2. Tolnay M et al, J Immunol. 2002;169(11):6236-43.

www.lonza.com

Lonza Cologne GmbH – 50829 Cologne, Germany

Please note that the Amaxa" Nucleofector" Technology is not intended to be used for diagnostic purposes or for testing or treatment in humans. The Nucleofector" Technology, comprising Nucleofection" Process, Nucleofector" Device, Nucleofector Solutions, Solutions,

This kit contains a proprietary nucleic acid coding for a proprietary copepod fluorescent protein intended to be used as a positive control with this Lonza product only. Any use of the proprietary nucleic acid or protein other than as a positive control with this Lonza product is strictly prohibited. USE IN ANY OTHER APPLICATION REQUIRES A LICENSE FROM EVROGEN. To obtain such a license, please contact Evrogen at license@evrogen.com. The CMV promoter is covered under U.S. Patents 5,168,062 and 5,385,839 and its use is permitted for research purposes only. Any other use of the CMV promoter requires a license from the University of lowa Research Foundation, 214 Technology Innovation Center, lowa City, IA 52242. The use of this product in conjunction with materials or methods of third parties may require a license by a third party. User shall be fully responsible for determining whether and from which third party it requires such license and for the obtainment of such license. No statement is intended or should be construed as a recommendation to infringe any existing patent.

@ Copyright 2011, Lonza Cologne GmbH. All rights reserved - D4SP-3001 2011-01